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ABSTRACT
27836

This report considers a multivariable system, described by the
P-canonical structure, utilizing two digital controllers, one in the for-
ward loop and one in the feedback loop. The controllers are designed
to obtain the fastest error-free and ripple-free input-output responses,
and the fastest neutralization of disturbances. Two matrices are
fundamental to the design, the matrix K, relating the output response
and the input response, and the matrix L, relating the output due to
a disturbance in the system forward loop to the disturbance itself.
The performance criteria, the fundamental requirements for interacting
or non-interacting systems and the conditions for independent output
restoration are implemented directly into these two matrices. The
matrices are restricted by the natureof the inputs, the disturbances and
by the plant itself. The advantages of the proposed design method are
as follows: the chosen configuration of the digital controllers used in
the structure does not require that extra restrictions be placed on the
K matrix if the plant is unstable; the system is designed as an n variable |
system and does not use n single variable systems constructed artifi-

cially from the original multivariable system, while retaining a relati-
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vely simple design procedure.
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INTRODUCTION

A particular method for the optimal design of digital controllers
for a large class of multivariable systems has been chosen and developed.
The method chosen is based extensively on a paper by Hungs, on single
variable systems. Hung utilized two digital controllers, one in the for-
ward loop and one in the feedback loop of a sampled data control system.
There are two distinct advantages in this controller configuration. By
using two controllers the desired input-output response could be obtained
independently of disturbances acting on the system (anywhere other than
at the input). By having one controller in the feedback loop the input-
output response was not affected by unstable plant. There has been some
fairly recent work on the design of controllers for multivariable systemss’ 7,
but compared with that on single variable systems it can hardly be con-
sidered extensive. The method resulting from this paper, obtained from
extending the single variable method to multivariable systems, has several
factors to commend it. These are itemized and discussed briefly.

1) General system criteria, which will be introduced later, such
as:

independent output restoration,

interacting system,

non-interacting system,
are implemented as the first step in the design. They.determine whether
the two basic transmission matrices are diagonal or non-diagonal. These
two matrices, K and L, will be introduced more fully later.

2) The system itself places certain essential restrictions on
these matrices. Obtaining these restrictions is the essence of the bulk
of this paper, and as long as these restrictions are included K and L. may
be otherwise chosen as desired. If one controller is placed in the feed-
back loop then the input-output matrix, K, is unrestricted by unstable

plant.
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3) The criteria determining the output of the system, Minimal
Prototype or Ripple Free, and elimination of the disturbance effect, are
implemented directly in the basic matrices K and L.

Thus the method of designing in terms of the two basic matrices
ties together the general system criteria, and involves at the same time
the restrictions essential to obtain the desired type of output response.

4) The resulting method developed in the paper permits a "true"
multivariable design: the system does not have to be broken down into
an equivalent number of single variable systems7, with its consequent
divorce from the actual multtivdriableproblem.

For a general multivariable system, with n inputs and n outputs,
matrix notation may be used. Capital letters denote a matrix and lower-
case letters the elements of a matrix, for example

R = R(2z) is the input matrix.

r:i = rj(Z) is the j‘th element of the input matrix R.

Referring to Fig. 1,

1 €1
r c
‘2 '2
] []
Input, R = |}! Output, C = || |
! X
r. c.
‘J ‘J
1
\ \
1 t
' \
r c
n n

where C(z) is the output due to R(z) acting independently of the distur-
bance.

Similarly,
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where C' is the output due to the disturbance, U acting alone.

If there is a relationship between C and R of the form,

C = KR (1)
where K is an n by n matrix, then the system may be structurally classi-
fied as 'P- ca.'n.'onical4. A large class of systems may be represented by
this structure and this paper is concerned only with this structure.

A very desirable practical feature of multivariable systems has
been named by Freeman6 as "independent output restoration”. A system
is said to have independent output restoration if changes in the individual
outputs of the system donot affect the other outputs. The P-Canonical
structure conveniently describes such systems. Thus restricting the
structure of the system to the P-C&nonical is, for many practical cases,
not a disadvantage. |

From Equation (1),

c, = kllrl + k12r2 SRR klprp +--+k1nrn

and for the jth output,
c.=k,,r.+++ k. r ++++k. r : 2
i PP jn'n (2)

where k.p is the element of K, the input transmission matrix, belonging
to the jt row and the pth column.
From Equation (2) it is clear that, in general, each output is de-

pendent upon all of the inputs, and when any one output, say cJ. is dependent



upon more than one input the system is termed "interacting”. When
cj is dependent only upon r:i (for all j) the system is termed "non-
interacting". For a non-interacting system it is clear that K is a di-
agonal matrix.

Just as C has been related to R by the input transmission matrix
K, C' may be related to U by an n by n matrix L, the disturbance trans-
mission matrix, so that,

C' = LU. | (3)

It will now be shown that for independent output restoration L
must be a diagonal matrix. Suppose L is not a diagonal matrix, then in
general,

c!'.=1,.,u, +1. _u
J

191 * Lo +-o+1jpup+--+1jnun (4)

2

where ljp is the element of L corresponding to the jth row and the pth

column of L.. It is evident from Eq. (4) that a disturbance on one output
will affect all the other outputs. This is contrary to the desirable feature
of independent output restoration. Thus so that a change of one output

does not affect any of the other outputs it is clear that L. must be a di-

agonal matrix.

The design criteria used in this paper are an integral part of the
design theory and will in fact be used directly and quantitatively. Two
criteria are used in describing two different general input responses,
namely, Minimal Prototype Response, and Ripple Free Response. The
minimal prototype response requires that the output reach the desired
value in the least possible number of sampling instants. The ripple free
response requires that steady-state outputs contain no inter-sampling
ripple. In general the number of sampling instants taken to reach the
final zero error is greater for the ripple free system than for the mini-
mal prototype system response. It is also required that the disturbance
effect be neutralized as soon as possible after it appears, and therefore
C' must go to zero, at the sampling instants for a minimal prototype res-

ponse, or without any ripple for a ripple-free system response.



BASIC EQUATIONS

Referring to Fig. 1, the basic equations will now be developed.
. R, C and C' are
D2 and G and H areen by n

Matrix notation is used throughout: E, El’ 9
column matrices, representing n-vectors, Dl’
matrices. 0 is the zero matrix, I the identity matrix.

Since the system is assumed linear, superposition holds true and
C and C' may be treated separately and added together to give the total
output. The following equations are derived in Appendix III: primed
variables are used when the disturbance U is considered alone, so that
with U = 0,

[

-1
+ GD1D2] GD.R . (5)
With R = 0,
-1

From Equations (1) and (3), K and L. may be re-defined as:

C! = [I+GD1D

-1
K= [I + GD1D2] GD1 » (7
-1
L = [I + GD1D2] (8)
and substituting (8) into (7),
K= LGD1 . (9)
The following equations can also be shown:
E, = G 'KR (10)
L=1I- KD2 . (11)

For independent output restoration L must be a diagonal matrix and from

Equation (8), GD,D, must itself be a diagonal matrix. This is Freeman's6

172
condition for independent output restoration. Finally:
E! = -G KD, U (12)
2 2
E =[-K]R. ) (13)



The idea lying behind the design method will now be given. The
end result of the design method are the optimal controller matrices D,

and D2 that will give the desired response types. D, and D, are defined

1 2
by K, L and G, Equations (11) and (9). G is assumed to be fixed plant.
By obtaining K and L therefore, D, and D, may be obtained.

K and L however, cannot be chosen arbitrarily, but must contain
certain factors, factors which are necessary for stability considerations
and the obvious need for having controllers which are physically reali-
zable. Various restrictions must be placed on K and L therefore, and
these restrictions determine the response. This response is the opti-
mum for the structure and the particular G matrix. The remainder of
this paper is concerned with the determination of these restrictions and

the practical procedure for determining D1 and D, from the resulting

2
K and L. matrices. Restrictions for four variations are developed.
Firstly the simpler non-interacting case, for both minimal prototype
and the extension to ripple-free design. Secondly the interacting case

is treated, again for minimal prototype and ripple-free designs.



RESTRICTIONS ON SYSTEM TRANSFER FUNCTION

NON-INTERACTING SYSTEMS

It has already been stated that K is diagonal. For independent
output restoration, L. and therefore GD1D2 are diagonal, and from
Equation (11) it can be seen that KD2 is diagonal. Since KD2 and K are
both diagonal, for the non-interacting system, D, is also diagonal. Now

since G‘:DID2 is a diagonal matrix and D,, is diagonal then GD, must also

2 1

be diagonal.
The minimal prototype restrictions will now be derived. From
Appendix I,

.= (1 - k..)r.
eJ ( kJJ)rJ (14)

where kjj’ ej and rj are the jth elements in their respective matrices.
It is assumed that the inputs are deterministically describable by func-
tions of the form: .

r, - Aj/(l—z_l)mj for all j, (15)

where Aj is a finite polynomial in zul. Then, if ej is to go to zero in
the steady-state, the denominator of rj must be contained as zeros in

(1 - kjj)’ for all j, from Equation (14), or

-1.m. )
-k.)=(1 - _ “ (16
(1 kJJ) (1-2z 7) JFJ (16)

where for all j, Fj is a finite polynomial in z-l. This restriction on the
elements of the diagonal K matrix is equivalent to
k.(1)=1
JJ(
k'.(1)=0
- (17)

'mj-l
k.. 1)=0
4 (1)

where kjj is differentiated mj - 1 times with respect to z_l, for all j.

This is condition 1.



The mathematical form of the G matrix elements is in general:

-t.. o 1 -1 a;. ~a,.
Z 1] (pl + pl VA T A pllJ Z J)
g.. = J J j 18)
Y 1 1 b.. -b..
0 - ] L ] L ] [ 1J 1J
qlJ + qlJ zZ + + q]_J VA

for the element in the ithr:ow and:.;jlfb ¢olumn. The term q(i)j must always
be pre1senzt and also for prag%ical plants tij is at least unity with q_i)j

>
present. A term such as z Y

is called the " plant transport lag " of
the i, jth element.

From Equation (9)

K = LGD1
or
-1_ -1
D1 =G 'L K. (19)
Since GDl is diagonal, and G is in general non-diagonal, D1 must be

non-diagonal. Egquation (19) is treated element-wise in Appendix I and
a general expression obtained:
1 -1
k.

=8

d.. k.. 20
1) 1 ] (20)

1..

3
-1. . .th -1 . |

where gij is the i, j ~ element of G , the inverse of G; dij is the ele-

ment of D, corresponding to the ith row and jth column. From

L_= I- KD12, 1jj will always contain a cons:czlant term in its polynomial in

z = and so unless the transport lag of l/g.'ij is contalined in kjj’ then from

(20 '), it will appear directly in the denominator of dij and would therefore
give a physically unrealizable element«'d%l. Considering Equation (20)
again, the second restriction on k.. is therjlevident. For all j, kjj must
contain the maximum transport lag of l/gij as i=1... n, asa factor in
its numerator. This is condition 2.

Substituting Equation (9) into Equation (10), and since L and

GD, are diagonal,

E2 = DILR (21)

1
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For the elements of the column matrix E2, in general, from Appendix

I,
n

9 1 |
Y= 1 d. r (2 2
®] Z pp_ jp P
p=1

where ej2 is the jth element of the matrix E2. Also from (12),

E', = -G'IKDzU

and from Appendix I

n
1 -
e2' - - E g Ly 42, (23),
h] jioiivii i
i=1
2 . ..th \
where dii is the ii" element of the matrix D,.

2
Now consider Equation (20),

-1
a5 & /Y
Suppose g;JI contains unstablf poles, and suppose that they }gre not ca;nl-
celled by zeros of k.., then dij will contain as its poles the poles of gij'
‘Equation (20) gives

iy = gty - &
For the present, any outside zeros of g;Jl , which from Equation (24) would
cause kj' to be unstable, will be pu‘i ;co one side a\nd1 dealt with later. The
presence of the unstable poles of gij as poles of dij is, however, effecting
a pole-zero cancellation. Pole-zero cancellations interfering with the
outside poles of any transfer function in a system, always produce insta-
bility. In this case, if dilj contains unstable poles, not including those
which are 2ou’cside zeros of ljj’ for i = 1. . .n, then it is clear from Eq.
(22) that ej will be unstable, although Equation (24) would not indicate any

instability of kjj'
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Equation (23) also shows that unless the outside poles of g 1 re
cancelled by zeros of k i oT d2 then ei will also be unstable.

Then it is ev1dent that to give a stable controller element le nd
to ensure that e? is stable, any unstable poles of g -1 must be contained
in kjj' This is the third restriction on kJJ

» For j=1. . . n, kjj must contain as its zc_erl'os the outside poles
of gij fori=1.. .n. These outside poles of gij are in fact the zeros
of the determinant of G. This is condition 3.

Returning now to the case where g-ij1 has outside ‘zeros and re-
ferring again to Equation (20),

a7 8 gl
it is clear that these outside zeros of g-l:‘1 cannot be contained as poles
of kjj’ as an unsi:allble k.. would of course entail an unlstable c.. The out-
side zeros of gij cannot be made outside zeros of dij , as this would mean
pole-zero cancellation again. There is no reason, of course, why outside
zeros of kjj cannot be made outside zeros of dilj' The_ 1only waiy to prevent
pole-zero cancellation between the outside zeros of gij and dij is to can-
cell the outside zeros of g 1 by zeros of 1JJ Thus the fourth restriction
may be formulated. For a11 } any outside zeros of g ; asi=1...n
must be contained as the zeros of ljj' These outside zeros of G“1 are
related to the outside poles of G. This is condition 4a.

It is reasonable to assume that U is deterministically describable

by a set of elements, n.
=Bﬂu-z“) J (25)
where Bj is a polynomial in z-1 of finite length. From Equation (4)
c'.=1l..u. . (26)

J W]
For the disturbance effect to be zero as soon as possible it can be seen

from Equation (26) that 1jj should be of the form:

N
~——

-]‘nJ
1. =(1 - P,
j= -2z )Ry

—
[\V]
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where Pj is a finite polynomial in z-l. This is condition 4b. Restrictions
4a and 4b may be conveniently condensed into one set of similar condi-

tions. For all j,

..(1) =

lJJ( )=0

! =

bt =0

'nj-1 (28)
.. 1)=0

1JJ (1)

ljj (first outside zero of g% asi=1...n)=0

1.j (last outside zero of g-ll1 asi=1l...n)=0.

This may be termed condition 4. If one or more of the outside zeros is

raised to the qth power then ljj must be differentiated(q - 1) times, and

1.9-1 at this zero equated to numeric zero. The example

1..,1'... ..
JJ ]
will illustrate this point.

These constitute the restrictions for the non-interacting, minimal

prototype response.

Additional Restrictions for Ripple Free Response

The requirements for ripple free outputs is that the plant inputs
be smooth, taking the form of a step function, a ramp, etc. The inputs
to the plant are the hold outputs. To give the desired smooth outputs, the
holds must conform to an elementary restriction and the hold inputs must
be smooth themselves.

Suppose hj is the order of the jjth hold in H, which is diagonal,
then

hJ. +1> ¢j (29)

where ¢j is the order of the hold input e? . This can be seen directly

from the mechanics of the hold operation. Thus, e? must be of the form,
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eJ? = Qj/(l - z‘1)¢5i . . (30)
where "Qj is a polynomial in z °, of finite length so that a smooth hold
input is eventually reached. If fji is the number of (1 - z-l) factors in
the numerator of gj-il’ then from Equation (10) and the working in Appendix

I
n

2 : -1
e. = .. k.. r, (31)
j Z 831 i Ty

i=1

it can be seen that the order of the jth hold, hj , -must comply with the
following restriction: For all j,

h,+1 2 m, -f.. asi=1l..n (32)
J 1 n

This is condition 5a. m, is the order of the ith input, r..

Since the input to the hold must itself be smooth to give a smooth
output, then from Equation (31 ), g;l'll kii must be a finite polynomial in z—1
and so a further restriction on kii_ils necessary. For all j, k'j must con-
tain as its zeros all the poles of gij for i =1....n. This is condition
6a.

The ripple-free disturbance function is treated in a similar way.
From Equation (23 )

n

2 E a2
€5 g Ky 9y (33)

i=1
t
and assuming e2j is of the form,

ej? - Q; /- 27 4% (34)

1
where Qj
! -
and Qj do not contain any (1 - z 1) factors. Then again,
1
hJ. +12 ¢1. (35)

is a finite polynomial by the same reasoning as before; Qj
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and this gives a further restriction on the hold order, for all j,

h.+#>n,-f,, asi=1 n, (36)
] — 1

where n, is the <)2rder of the ith disturbance. This is condition 5b.

Now kiidii is certainly finite itself, consider Equation (11),
L=1- KDz, where the L matrix is compare'd of finite elements, so that
to obtain the required smooth_hlold input, ej2 ; for all j, kjj must contain
as its zeros all the poles of gij ,fori= 1. . .n. This is the same as
the input response condition 6a.

Summarizing the additional restrictions 5a and 5b,ifor:all j:

hj+ lz(mi and ni) -fji fori=1..n (37)

where fji is the number of (1 - z-l) factors in the numerator of g;11 s
therefore condition 5.

kjj must contain as its zeros all the poles of g_l.]1 asi=1...n, for
all j and so, condition 6, restating 6a for qonvenience here.

This concludes the restriction theory for the non-interacting case.

INTERACTING SYSTEMS
Considering Equation (2), for an interacting system the K matrix
is non-diagonal. To retain independent output restoration L is still a

diagonal matrix and GD D, must also be diagonal. Equation (9),

1
K = LGD,
shows that GD 1 must be a non-diagonal matrix, since K is non-diagonal

and L is diagonal. Consider now Equation (11),

L=I-KD2

then KD2 is a diagonal matrix and it is also clear from this that D, must
be a non-diagonal matrix,
As before, this theory deduces the necessary restrictions on K

and L and will enable D, and D, to be designed for the fastest reduction

} 1 2
of the distuwbance to zero, and the fastest response time for minimal

prototype or ripple free systems. The K matrix reached after the re-
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strictions have been applied is the "minimum" K matrix. The elements
of K may be made longer to suit the design problem, all that the restric-
tion theory requires is that the elements of K, and also those of L, con-
tain certain specified factors.

The restrictions for the minimal prototype response will be de-

veloped first. For U =0, Equation (13) states:

[I-K]R

and according to the result reached in Appendix I,

n
e.=(1-k.)r, - E k,.r, (38)
J N I 1
i=1
i 3
then by the same reasoning used to derive condition 1, for the error ej

to settle to zero, in general: For all j, (1 - kJ .) must contam the factor

(1 -2 1) J, and k, i must contain the factor (1 - ) j for all j as
i=1..n, 1/= j- This restriction is equivalent to;: For all j,
k.(1)=1
1
k' .(1) =
1]
(39)
J -1
k.. 1)=0
J] {

and for all jasi= 1..n,i¥# j,
kij(1)= 0
1 =
kij(l)

(40)
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where kjj’ ki:i are differentiated with respect to z-l. This is condition
1.

From Equation (19) and the matrix manipulation in Appendix I,
1 -1

d;. = E k.1 (41)
1) glp PJ/ PP ,

and from Equation (41), by reasoning exactly similar to that used in de-
riving condition 2, it may be stipulated that: To ensure le is physically
realizable, k j must contain the maximum transport lag of l/g -1 as
= 1..n, f& all p,§--This is condition .
Again from Equation (41) and by the reasoning used to derive

condition 3, then to prevent dilj from containing as its poles the outside

poles of
n
-1
gip
p=1
then, for allpj, j must contain as its zeros the outside poles of g.“

;L- 1...n. These outside poles are the zeros of the determinant orG
This is condition 9.

Considering Equation (26), which applies in this interacting case
as well as the non-interacting case, then by reasoning as in condition 4b,
the following set of restrictions must be applied to the matrix L. For all
1s

ljj(l) =0

1!. 1 -

n.~-1

I (1 -
ljj()



where the elements are differentiated with respect to z-l. This is
condition 10.

Consider now condition 4a of the non-interacting case, and at the
same time consider Equation (41). There is no restriction on 1.. which
is analogous to condition 4a. The outside zeros of gi_pl asp=1l...n
need not be made the outside zeros of lpp, as the summation performed
in Equation (41) does not result in the direct, and therefore harmful,
appearance of the outside zeros of gl_p1 for all p.

These constitute the restrictions on the K and L. matrices for the

interacting minimal prototype system.

Additional Restrictions for Ripple-Free Systems

Consider Equation (10),
E, = a kR .
From Appendix I,
2 - -1

_ 1
e = 8j1 (kT + ko Ty terthky 1) +eot gip (kplr1 +"+kpnrn) +

-1
. .o 43
+ gjn (k  rq+ec+ k ) - (43)

By reasoning developed for condition 6a, for smooth hold inputs then
from Equation (43) the following condition is needed: All the poles of
-1 CETTE

is condition 11,

for i = 1...n must be contained as zeros of kjp as p=1l...n. This

Considering Equation (12),

¢ 'kp.U

]
E 2

2

then if condition 11 has already been applied, the hold input Eé is smooth
itself. This isreadily seen by comparison of Equations (10) and (12)

and remembering that KD, is a matrix of finite elements.

2
Equation (43) may be compared with Equation (31), and then if

the same reasoning be applied for this interacting case as was applied

to the non-interacting case of condition 5a, it will be evident that a more

stringent restriction must be placed on the order of the hold elements:
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For all i,

hi+12m—fi' (44)
where fi' is the least number of (1 - z-l) factors in the numerator of
g;jlfor all j, and where m is the maximum order of all the inputs. This
is condition 12a.

In an exactly analogous manner, for e;.z ', a similar restriction
is also required: For allii,

hi+12n-f;.; (45)
where n is the maximum order of the disturbance elements, uj for all
j. This is condition 12b.

Conditions 12a and 12b can be conveniently summarized into
one composite restriction: For all i,

h, + 12 (m,n - fJ!) . (46)
This is condition 12,

This concludes the theory of the interacting system restr-

ictions.



DESIGN PROCEDURES

In the preceding theory restrictions have been developed that
are to be applied to the hold elements and to the K and L. matrix elements.
The design procedure for the non-interacting case is simpler than that

used in the interacting case. Examples of each design method are giv-

en later. Both methods of design rely upon Equations (11) and (19),
L=1- KD2
D, = ¢ Lk

NON-INTERACTING CASE
Consider Equation (33),

n .
21 -
e. =- g..1 k.. d.2.u.
j z ; ji il il i
i=1
from this equation it can be seen that if dizicontained, in its denominator,
t
any outside poles then e? would become unstable. In particular, dizi
cannot contain those outside zeros of k.. which were taken from g._. , as
Y ii ji
ej would again be unstable.

Briefly the design procedure is as follows. The hold checks,
condition 5, are first applied if ripple-free design is required; con-
ditions 1, 2 and 3, and condition 6 for ripple-free design, are used to
obtain the K matrix; using Equation (11), the restrictions on ljj are app-

lied and L and D, are found simultaneously; Equation (19) gives the el-

2
ements of D..

1

These steps are now elaborated: For a ripple-free design, the
first step is to apply condition 5 to the hold elements and to the elements
of the inverse of the G matrix. For all j, asi=1...n,
h,+1> (m., n,) - f...

i - i

The elements of the K matrix are obtained as follows: For all

Js kjj must contain the maximum transport lag of l/gi-j1 asi=1...n, from

19
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condition 2. For all j, kjj must contain as its zeros the outside poles of

-1
gij H
are the same as the outside zeros, or all the zeros when ripple-free, of

or all the poles of gi_jl for a ripple-free design, as i®1...n. These

the determinant of G. Conditions 3 and 6 were used here. The k.. obt-

ained so far is then multiplied byhl 1

_ -(m.-1)
(a° + a% 2l e, + a, z I ) (47)
J J J
and condition 1 is applied: Equation (17), for all j,
k..(1) =1
J'J
k.{1) =0
kD
mj-l
k.. 1) = 0.
3 (

The numerator of d?j is a polynomial in z_1 whose length is det-
ermined by n‘_i and the outside zeros of gi—jl’ thus;
n.-1 -(n.-1 n.+0.-1 -(n.+0.-1)
1 i i )

(b§)+bjz_1+...+bj z +...+bjJ Iz 11 ) @48

The coefficients of this polynomial will be found later, O, is the number
of outside zeros of gi_j1 as i = 1l...n. The denominator of d?j is made to
be all of kjj’ except for the outside zeros of kjj' Appendix I gives from
Equation (11),
1.=1-k,. d> (49)
3] 31
where kJJ d?. has now been treated so that it is thez product of the outside
zeros of kjj and the undetermined numerator of d_.. If the condiztions on
ljj’ condition 4, are now applied to Equation (49), then l.. and d'j can be
found simutaneously. Condition 4 states, in the form of Equation (28),

for all j,
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n
o

L;tH

]

1

n.-1

1.3 (1)=0
JJ()

lij (ISt outside zero of gi-jlas i=1l...n)=0

1..( Oth outside zero of g.-.las i=1...n)=0.
3 J 1]
Since both kjj ‘and ljj’ for all j, have now been found, dij may
be directly obtained by substituting in Equation (20),
]. = g'lk /1
8 I S I N L A
An example of this non-interacting design method is given

later to illustrate the procedure.

INTERACTING CASE
If ripple-free design is specified condition 12 must be sat-
isfied, so that from Equation (46),
hi +12 (m,n - fi').
The elements of the non-diagonal K matrix are obtained in
a way similar to the diagonal K matrix. The following steps are re-
quired: Forall p,"‘, k,. must contain as its zeros the maximum transport
of l/g!:_' as &= 1...n, from condition 8. From condition 9, addition-
ally condition 11 for a ripple-free system, k'j mu_s;c cont.ain the outside
poles or all the poles for ripple-free outputs of g.ﬂ. as L= 1...n.
These poles correspond to the zeros of the determinant of G. The
elements of K , so far incomplete, are then to be multiplied by the fact-
or, m.-1 -(m.-1)
(aj I AU +a,d z I ) (50)
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and condition. 7, in the form of Equations (39) and (40), is applied::

For all j,

{1
1;3'3<1>
jt

m.-1
k.. 9(1)
ii

1]

0
I...n, i#j,

and for all j, as i
kij(l) =0

1 =
kij(l) 0

mj-l
kij (1)=0

So far the design has followed a method analogous to the non-
interacting design, but at this stage the two design procedures must
differ since K is no longer diagonal. Consider Equation (11) and in

particular the matrix KD, which has been shown to be diagonal. The

2

need to ensure that KD, is in fact diagonal is the :basis of the remain-

2
ing design procedure. Equation (11) is treated in Appendix I, and since
the elements of KD2 must correspond to a diagonal matrix, this treat-
ment may be expressed as follows: For i, j= 1..n,

E 2
kipdys =0 - (51)
2
k, d°. =1-1, (52)
- jp pi ji
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From Equation (11) then, n2 equations have been obtained. These
may be broken down into n sets of similar equations with (n - 1) equ-
ations per set, those of Equation (51), and n equations obtained from
Equation (52). From Equation (51), as i = 1...n, i # j,

n

2 X 2
ki = E Ky (53)

p=2

and let j = 1...n to obtain the jth set of the (n - 1) equations. Treat-
ing d?j for j = 1....n as a constant, then from Equation (53), there

are (n - 1) equations with d12)j as p = 2...n to be considered as un¥" -
knowns. The elements of K are to be considered as constants. These
(n - 1) equations can be readily solved, for example by Cramer's Rule,

in terms of d?j for d12)j’ as p=2...nfor all j. Thus forji=1...n,

= 2
dij = Oij(k elements, dlj) (54)
where eij is found by solving the (n - 1) equations above. Equation

(54) for all i, j is then substituted back into Equation (52) giving:

n
"1l..=1- k. 6 . (55)
3 Jp PJ
p=1
or,
n
2
l..=1-4d". k. 7 . (56)
3 1j ip pj
=1
where 7_. = 0 ‘/dz. so that k. 7_. for all j.and p is only a function of
pj pi' L] jp pj

all the elements of the matrix K, which of course have.alreddy been
determined. The last stages of the interacting design may now be

completed. For all j,
n

B. = k. T . (57)
J JP PJ
p=1
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can be expanded and factorized. The denominator of B in its entirety
is to be made the numerator of d 1 so that for all j, ljj 1s a polynomial
of finite length. The numerator of Bj’ in its factored form, in general
will contain inside zeros. These inside zeros are to be contained as

inside poles of d?j as j= 1...n. The d?j obtained so far is then mult-

iplied by,

_ n.-1 -(n.-1)
(¢1r§)+af1.lz1+.....+afjJ z 3 ) (58)
for all j. Then, . - ‘ nj-l -(nj-l)
1.. = .+ o) + .... + . ! 59
I R b I B (59)

where BJ! represents the remaining terms of Bj after as much as poss-

1j
form of Equation (42), are now applied to determine the values of the

ible has been taken into d2 .. The conditions on ljj’ condition 10 in the

coefficients arg), afjl coe anj-l for all j. Thus ljj and d?j can be deter-
mined simultaneously for all j. The first row of the D, matrix has now
been obtained, d?j for all j. The remaining rows are found from Equa-
tion (54), for j=1...n,i=2...n,

-0 . .
ij = "ij

The elements of the D1 matrix can be found from Equation
(41), n

1 §
al -
ij (glp Ko/ 1pp

p=1

A short example to illustrate the interacting design method

1)

will clarify this rather abstract treatment.

This concludes the design theory of the interacting system.



EXAMPLES

Two examples are given. The first example gives a complete de-
sign for the non-interacting case, for both minimal prototype and ripple
free systems. The second example merely illustrates a particular point
of the interacting system design, but, except for the more involved work

required for the interacting system, the two systems are basically very

similar,
EXAMPLE 1
Suppose the plant-hold matrix, G, for zero order holds is given
below:
52-1 32-1
-1 -1
(1 -1.05z ) (1-0,1z )
G =
3z 1 2z 1
-1 -1
(1-0.1z 7) (1-1.05z 7)

then from Appendix II;

- 272 (1+17.4527) (1 - 0.555;,'1)
3
(1 - 1.05z" 1) (1-0. 1274
and thus G-l
-1 1.2 1.2 -1
2(1-1.05z 7)(1-0.1z 7) -3(1-1.05z ") (1-0.0z ")
2 1+ 17452 ) (1 - 0.5552°0)  z7Y(1+17.4527 1) (1 - 0.55527 1)
1.2 -1 -1 1.2
23 (1-1.052"Y (1-0.1z"1 5(1-1.05z" %) (1-0.1z"1)

- (1+ 17.45z’1) (1 - 0.555z'1) z'1(1 + 17.45z’1) (1 - 0.555z'1)

For a minimal prototype system, assume the input and disturbance

functions are of the form:

25
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(1 -2
1

(1-2"7)

1)

1
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For the non-interacting design, K has been shown to be diagonal.

Ripple free design is not specified so there is no need to apply the hold

checks, condition 5.

The K matrix is now found from conditions 1, 2 and 3.

Then k..,
JJ

for all j, must contain the max. transport lag of l/gij asi=l.en.

Therefore k11 must contain z_1 as a factor, so also must k22. For all

i kjj must contain as its zeros the outside zeros of the determinant of G.

Therefore k11 and k2
Since m, = 1, k

multiplied by (3.2o + a

k.. =2 1 (1+17.452" H)af

11

k.. =z 1 (1+ 17 452"

22

11

and condition 1,

and

k11(1)= 1,
k22 (1) = 1
kéz (1)=0

is applied.

is now multiplied by acl) ; and since m

2 +alz7l

1

must contain as a factor the term (1 + 17.45z ).

29 1S
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From Appendix II, these conditions give as the completed K
matrix,

k. =0.054z 1 (1 + 17,4527}

11 )

koo =0.1592 1 (1+ 17.4527Y) (1 - 0.6627 ) .

22

The numerator of d?]'j’ for all j, is a polynomia11 in zn1 whose
length is determined by n:i and the outside ze1_‘c1>s of gij‘ . Since n, = 2
and O1 is 2 (the number of outside zeros of gil as i=1,2). In this case
1= 2, then the
numerator of d?l must contain 4 coefficients. Similarly, since n, = 1,

2
and 02 is 2, exactly as before, then the numerator of dgz needs 3 co-

the outside zero at z = 1.05 is repeated twice, and so 0

efficients. The denominator of d?].j is to be all of kj" except for the out-

side zeros of kjj' Therefore according to Equation (49):

_ -1 -1 o 1 -1 2 -2 3 -3
lll—l-z (1 + 17,452 )(b1+b1z +blz +blz )
and
o) 1 -1 2 -2 3 -3
d2 i (b1+b1z +blz +b1z )
11~ 0.054
-1 -1 o 1 -1 2 2
122—1-z (1+ 17.45z2 )(b2+bzz +bzz)
and

o) 1 -1 2 -2
d2 =(b2+b2z +bzz )
22 0.159 (1 - 0.662 1)

If the conditions on ljj’ (4).for j =1, 2 are now applied to the above

equations for 1., and 1, .,
N 11 22
111(1) =0
t -
111(1) =0

111(1.05) =0

11'1(1.05) =0
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and
122(1) =0

122(1.05) =0
1'22(1.05) =0 ,

then as shown in Appendix II the coefficients can be evaluated:

0—

b = 0.54
]
b, = - 112
b2 = 0.674
3 _
b = 0.22
o—
b2_ 0033
]
by = -0.39
2 _
b = 0.175 .
Thus , 9 o 9 .
1,,= (1-2"1) (1-1.0527") (1+3.562° )
-1 .12 -1
lyp = (1-2z ) (1-1.0527") (1+2.7727")
and
& =10 - 20.82 1+ 12.5272 - 4,127 !
d2, = (2.08 - 2.4527 " + 1.127%) /(1 - 0.6627") ,
d.. for i, j= 1, 2 are now obtained directly from Equation (20)
_1 2
RO 0.108 (1 - 0.0z™ 1)
1 cos552 ) (1-2"8% (1 - 1.0527 1) (1 +3.562° 1)
-1 -1
A ~0.4777 (1 - 0.0z" %) (1 - 0.6627 1)
12 ° T ,

(1 - 0.555z'1) (1- z'l) (1 +2.777z )
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gl . =0.162(1-0.1z"")
21 1 - o555z ) (1+3.562 )y (1-2"1) %
.12 -1
A 0.795 (1 - 0.0z~ 1) (1 - 0.66z" 1)
92 = =1 -1 =1 T -
(1-0.5552"2) (1 -2"Y)(1-1.052"Y) (1+2. 772 %)

This completes the minimal prototype controller design.

For Ripple Free Design

The hold conditions must be applied as a first step in the ripple
free design: For allj, hj + 12 (mi,ni) _fji’ fori=1...n. Wi_t? zero
order holds, h1 and h2 are both zero, and for the particular G =~ matrix
given in the example, fji (for all i, j) is also zero. Thus the hold con-
ditions are not satisfied as the problem stands at the moment, as
m, = 2, n, = 2. To avoid inserting more integratibns in the plant or
increasing the hold orders, which would make this example unnecessarily
long, it is proposed that only step inputs and disturbances are used. Then,
"1__1 __1__
(1-2z7) (1-2"7)

1 1

(1-2z"1h (1-2"1

The only difference now between the minimal prototype design and the
ripple free design is the inclusion of an extra restriction (condition 6)
on kjj' Not only must kjj contain the outside poles of gi-j1 asi=1...n,
it must also contain the inside zeros. The following K elements are
then

» 211+ 17.4527 1) (1 - 0,555z

P o 3 —
k,, = )al,smceml—l
Ky, = 271 (1+ 17.452'1) (1 - 0.555z’1) a‘z’ , since m, = 2
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and applying the conditions (1) on kjj (j=1,2):

-1 -1 -1
kll-k22~0.1222z (1+17.45z ") (1 - 0.555z 7) ,

111 and 122 are evidently the same as 122 in the above minimal prototype

case:
-1 -1,2 -1
1, =l = (1-2 D) (1= 10827 (1+2.77271),

. 2 . 42 . -
but d;, and d22 are, of course, different from the minimal prototype.

2o 2.7 3,227 1 + 1.442%)
- 1

11 (1 - 0.555z" 1)

155272 - 1.8279)

(1 - 0.555z'1)

2 (4.4 -9.2z
dgg =

The elements of D1 are found as before:

_12
d1 - (1 -0.1z ) 50,244
1 g ha-noes o+ mh
-1
1 0.366 (L - 0.0z )
dgy = - -1 -1
(1-zYa+2.127h
_12
A 0.61 (1 -0.1z" %)
22 = T -

(1-zY-1.052 Y +2.72"h

The outputs, C and C' can be directly calculated from Equations
(1) and (3).

For the minimal prototype system:

c1=0.054z'1+z'2+z'3+... step

c, = 0. 159272 + 3275 + el ramp

ci = z-1 + 1.46z-2 - 6.4z-3 + 3.9z_4..ramp disturbance
-1 -1 -3 .

c!=1+0.,672  -4.7z ~+ 3.04z .. step disturbance.
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For the ripple free system:

c, = 0. 122271+ 2.1802 %+ 273+ ... step
¢y = 0.12227 1 + 2. 18227 2+2° 34 ...  step
c'l =1+ 0.67z-1 - 4, 7z-2'+ 3.04z_3... step
el =1+0.6727 " - 4.7272+3.0427°... step.

To aid the interpretation of these outputs, they are plotted graphically;
Figures 2,3, 4 and 5. It can be seen from Fig. 3, the minimal proto-
type disturbances, that the output has an initially large fluctuation. If
this is considered undesirable, then extra constants may be included in
the appropriate element of 1L, and then adjusted to minimize the magni-
tude of the fluctuations at the output. These extra constants will of

course entail a longer settling time, but this may not be too important.

EXAMPLE 2
To help clarify the interacting design method, an abreviated ex-
ample is given. Assume for a 2 by 2 system, the K matrix has already

been designed, then, with D, and L to be determined, the diagonal matrix,

2

2 2 9 2
(kyjdyy + kygdyy) (ky;dig + kygdgy)
KD, =
2 2 9 2 2
(kgodyq + kyody;) (kg9 * kggdyo)

so that, from Equations (51) and (52),

2 2

lyp = 1 (kygdyy + kyodyy) (60)
2 2

0=k, dyjy+ kygdyg (61)
i 2 2

0= ky,do, + kypdo, (62)

lo =1 - (k..d%. + k._.d2.) (63)

22 21912 * Kgyodgy) -
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Figure 2. Outputs ¢, and ¢, for a minimal prototype system
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Figure 3. Outputs C'l and c,, for a minimal prototype system
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Figure 4. Outputs ¢y and c, for a ripple-free system
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Figure 5. Outputs ci and cé for a ripple-free system
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Then Equations (61) and (62)give a2 and d2 as explained in the inter-

21 22’
acting design method. Then

' 2
d2 - kZldll

21 koo

2
d2 L k11d12

22 k12

and substituting these back into Equations (60) and (63), then the follow-

ing relations are obtained,

2
k. .d
L 2 ko9
= b-(kyydyy + kg 0 ——))
22
2
. k..d
o 2 Ry
lgg = 1 - (kg dig + kg (= ——))
12
which lead directly to
2
diy
Li=1- % (ky1Kgg = Ky5koy)
22
1 -1Q—d?12 (k. k.. -k..k..)
99 ~ ko 2112 T F2gkir)

Continuing the design procedure, then k22 and k12 are made the numera-
tor of d?l and d?z respectively. Next (k11k22 - k12k21) and (k21k12 -
kzzk1 1) are expanded and factorized and as much as is physically reali-
zable and stableQr@to be contained in the denominator of their respective
D, elements. The remainder of the numerator of d?l and d?z is com-
posed of the polynomial in z-l, whose coefficients are to be determined
by applying the ljj restrictions Equations(59) and (42). Finally, having

found the first row of the D, matrix, the remaining elements may be

2
found from:
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2. 1
22" " Tk,

2 . . S
21 K,

The remainder of the interacting system design needs no further

clarification.



CONCLUSIONS

This paper has presented the theory and procedure used to design
digital controllers for multivariable sampled-data control systems. The
theory of the design method is based extensively on a paper by Hungs.
Simple examples to demonstrate the design procedure practically have
been given.

The essence of the method is to incorporate fundamentally in the
K and L matrices, the basic design criteria of multivariable . sampled-
data control systems: Interaction and non-interaction, minimal proto-
type and ripple free outputs.

By using the overall transmission matrices K and L as a basis,
the procedure developed ensures awareness of the actual multivariable
concept. This may be compared favorably with Sobral's me'chod7 of
designing controllers for multivariable systems by breaking down the
system into individual single variable systems.

A further advantage demonstrated is that unstable poles of the
plant do not place restrictions on the K matrix; this gives a faster
response than that available with the controller configuration of Sobral
(with both controllers in the forward loop).

Because the design procedure is based only upon stability restric-
tions on K and L and the necessary physical realizability of the controllers,
the design method becomes almost mechanical and is very simple to use.

The design system readily allows the treatment of systems with
more outputs than there are inputs. The dimension of the matrices used
in this case corresponds to the number of outputs, and the missing input
or disturbance elements are merely designated by zero elements in their
matrix. Similarly if there are more inputs than outputs, then the ficti-

tious outputs may be established.
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APPENDIX I:. ELEMENT EQUATIO NS FROM MATRIX EQUATIONS
D, = G_lL-1 K where K is a diagonal matrix.
1 1 -1 -1 -1
dj; dyp dy3 g7 812 Egflff 1/2y1 © Off{kyy © O
1 1 I | S S T |
dy; dyp doglt = [lga1 822 &30 1/lep OO0 kpe O
1 1 1 -1 -1 -1 )
dg; d3p ds3 831 833 &3 0 1/133"‘O 0 kgq
-1 -1 -1
g11 812 &3 ky/lyp 00
I S TS RS |
= 181 823 823 0 kyy/lyy Off
-1 -1 -1
€31 833 833 0 0 k33/133“
g'lk /1 -1y /1 -1y /1
110 %117/%11 812 ®22/'22 813 ¥33/'33
=l N N LN
21 %11/%11 822 %92/122 833 ¥33/'33
L on eoon wa Koo/l
831 *11/111 832 ®22/'22 833 X33/!33

in general,

1 -1
d.. = g.. k../1..
1) glJ JJ/ J]
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2 = Dy
2 1 1 1
€ di;  dip dgfifitin 0 O
2 1 1 1
eafl = 921 do2  das|||[® a2 ©
2 1 1 1 .
eg dg; dzp  dgglff|0 O i3
] 1 1
diy  dyp Attt
=1l 1 1 1
dyy  dyg  dogllillaaTs
1 1 1
dgy  dgza  d3all||133%3
1 1 1
(d)y 1, v+ djplyy Ty + diglsgry)
= (dll +d11 r+d11 r.)
- 21711 F1 7 %2 f22 T2 " %23 "33 "3
1 1 1

(dg; 1, 7y + dgg lyg Ty + dgg 135 T3)

in general,

2]




E2 =G 'KR where K is diagonal.
2 -1 -1 -1
€ €11 813 g13“ k, 0 0
2 -1 -1 -1
e |[= {821 822 g23I 0 kyg O
2 -1 -1 -1’
€3 831 832 g33II 0 0 kg
-1 -1 -1 -
€11 812 813 1171
) -1 -1 -1 .
891 892 B33 2272
-1 -1 -ft
€31 833 833 3373

1

- -1 -1

(g kyT) + 81gKooTy + 813K33T3 )

(g lk,  r +g-1k r +g-1k r.)
€91%1171 T 822%92"9 T 893%33"3

-1 -1 -1
(‘851K 171 + 839Kg9T5 * B33K,,T3)

in general:

]

]




2
21 -1 -1
€1 11 812
2 | -1 -1
€9 g1 829
21 -1 -1
®2] [IB31 832
-1 -1

g11 812

N SRS

=7 l821 822
-1 -1

€31 832

- 1 (8sq kqg
-1,

in general,

-G_lKDzU where K and D2

45

are diagonal.

-1y | 2
sl Ik, o o la¥, o of [,
-1 2
safflo % off flo o2 off [Ivs
-1 2
g5qf llo © k33“ 0 0 dg,fl ffu,
-1 2
g3 k11 911 ™1
-1 2
823 %22 922 Yo
-1 2
833 | |[k33 933 U3
2 1, 2 2
(g7 Ky dyp Uy T 85 kgp dogug + g13 33 d33 u3)
d2 u + u. + 2 u,)
11 gzz 22‘52 2 gzs 33 d33 U3
1,2 -1 2
(gg1 kg d11u + 835 Kyp Ay Uy + g33 Kgg dag ug)
n
1.2
'E TRt




E = (I - K) R where K is non-diagonal.
e, 1 0 0 ky, kyp K
1 0 1 0 = kg kg Ky
€3 o 0 1 kg1 K3z ki3
(1-kyy)  kyy kg 1
[ Rer (P -kyp) Ky Ty
k3p  “kzy (1 -kgg) T3
(1= kyry - kyoTy = kygrg
= || ka1t (1 - kyydry - KyaTyg

in general:

“kgyTy " kgorg * (1 - kggirg

n

e.=(1-k..)r. - E k.. r.,
J 1) . n1

i=1

ifi

46

If K is diagonal then kij for i # j is zero, therefore for K

diagonal,

.= (1 - k..)r.
eJ ( JJ)J



1

D, = G = L = K where K is non-diagonal.
-1 -1 -1
€11 812 83| [1/1yy O O |k11 kig
-1 -1 -1 1. -
891 892 Eo3f 0 1/1g5 O fIlikg; koo
-1 -1 -1
€31 83p &33ff [0 O /l3sllk3; kao
-1 -1 -1
g1 812 Eusfl |*iiflin k2/lig
-1 -1 -1
€21 822 &3 kg1/lyg Kgo/lyy
-1 -1 -1 ,
g31 832 g33" kg /133 K3p/lzg
(gle 1 v gile 0+ giik, /1a2) (al,)
B11%11/111 7 812 %21/1922 T 813%31/33 12
Moeste, .+ gl e o+ g e, /1,0 1
' 21 %11/111 T 822591/ 922 T &3 %31/ 33 (dyo)
1 -1 -1 -1
1
(dg,) (831K19/111 * €33 K55 195 * 833K35/15]

in general:

1

417

13

ko3

K33

kyg/lyy
kg3/159
kag/l33
1
(dlg
1
(dzé

4l
(dgd




E, =G KR
2 -1
€1 g11
2l -1
ezif 851
2 -1
€3 I €31
-1

811

) -1

= €21

-1

831

-1
gn(kyritkys

-1
31(k r,+k, r. +k
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where K is non-diagonal.

-1
812

-1
€22

-1
€32

€32

1°1 1272

in general:

A |

gzl f*11 k12 Rzl || T2
-1

Basfl [[%21 *22 Xasf || 2
-1

g33ll (I¥31 *s32 K33 rsi'

il

-1

g3l |1¥11%1 * K1gTo * Ky3T3
-1
23[l l|¥21F1 * Kaolg + KogT3
-1

233 kg Ty * kgolg * kggrg

-1 -1
Totkiard + gyl ko TyFkoorotkygrd + g13(1‘311’1"“321‘2“‘331"3)

-1 -1 -1
21(kur1+k12r2+k r,) + g22(k r+k, . r +k_,r,) + g23(k r.+k, r +k,.r.)

1373 21'1 2272 723" 3 31'1 73272 7333

-1 -1
1373) T 83a(Kg T thooTotkogra) + gog(ky ritks rotkaar,)



L=1-KD

in general:

1

33

49

9 where both K and D, are diagonal.
) 1 0 of k.. o offlfla®. o o
11 11
1.. ofl = flo 1 olf-flo k.. offlo 4. o
22 - 22 22
0 1 o o 1 flo o k. flfo o &2
*33 33 33
1 0 oI k., d>. 0 0
11911
= flo 1 off- Jlo k.42 o
) 'H 22722
0 0 1 0 0 k,,d
33933
2
1 -k, dj, 0 0
2
= 1o 1-ky,dy, 0
2
0 0 1-k33d33||
- 1-k.d

33 33



L=1- KD2 where both K and D2 are non-diagonal.
11d11+k12d§1+k13 31 (kndfz*klzdzz*kmdgz) (gt dogtleygdg g
KD, =i { k21d121+k22d21+k23d31) ( k21d12+k22d22+k23d3Q(k21d13+k22d23+k23d§:3
(k31d11+k32d21+k33d31?(k31d12“‘32“22*k33d32)“‘31d13 kg pdhgthyzdsg

and the individual elements of I - KD2 are then:

2 2 9
element, 11 = (k11 11+ k12d21 d31)
5 2 2 |
12 = -(kydjy +kjodoy + kygdgd =0
13 = -(k..d°. +k..d> +k. .d =0
= 11913 T kyodog T kygdgg) =
21 = -(k..d2 +k..d>. +k..d2) = 0
91911 * Kgpdyy + Kogdsy
2 9 2
22 = 1-(ky dj,y + kgodyy + kyads,)
93 =  —(k..d2. +k..d°. + ) -0
= 91913 * Kgodag + Kog 33
31 = (k.. d2. +k..do. + k..d2) =0
= 31911 T K3999; + k3gds, =
32 = -(k..d°. + k,.d>. + y =0
= 31912 * Kgpdgg * Kg3 32 =
33 =1 - (k,.d2, + k.. do. + )
= 31913 * k39933 * k33 33

in general the diagonal elements

1.. = (element),. =1
JJ J]

of I - KD,, are given by:
2 2
-E : k. d_.
P P

p=1




and for the off-diagonal elements;

0= (element).. = - k. d2‘
ij 1p P}

i p=1
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APPENDIX II".

2 -2

- gz ' .
(I -oZ')?

|G| = _ 102~
1,2

(1 -1,05z )

1,2

10z'2(1 - 0.1z V) 1,2

- 9z'2(1 -1.05z )

1,2,

A\~

2

(1 -1.05z - 0. 1z'1)

10272(1 - 0,227 1

£0.0127%) - 92721 - 2. 12"

CALCULATIONS FOR EXAMPLE I

1 2

+ 1,103z 9)

i 12
(1-1.052" H%1 - 0,127}

27210 - 2271 40,1272 -9+ 18.927 ! - 9.9225272)

2

(1 - 1.05z_1)2(1 - 0.1z 12

1 _9.82:7%

2(1 - 0. 1z'1)2

27 2(1 + 16.92~
1
)

(1 -1.05z
z‘2(1 + 17.45z'1)(1 - 0.555z'1)

(1 - 1.05z H%(1 - 0. 12712

The elements of K are now treated;
S -1 o
k11 =z (14 17,45z )aL1
and kll(l) = 1, so that,
1=(1+17.452" )al,

therefore,

a =1/18.45 = 0.054 .
Also, -

_ -1 ~1,, o 1 -1

k22 =z (1+ 17.45z )(a‘2 + a, 2
and,

k22(1) =1

-t -

kzz(l) =0

52

)

from the example,
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Expanding koot

Ky, = z-l(a(?) + aézz-l + 17452927 + 1745a,2 )
o - - 1 0 17°-3
=2,z + z (a2 + 17.45a2) + 17.45a2z .
ki =a®+ 227 Nal+ 17.452%) + 3(17.45a1272)
22 20 1 2 o 2 1 2
kéz(l) = a, + (2)a2 + 34.9::2 + 52.35&12
= 35.9.':12 + 54, 35a2
Now applying the conditions,
1= 18.45(a(2) + a;)
_ o 1
0= 35.9a2 + 54, 353.2
rearranging,
0 = 35.9a) + 54, 35a)
_ o
1.95 = 35.9a2 + 35, 9:12
and subtracting,
1,95 = 18.45a;
therefore,
aczl) = -1,05
a, = 0. 159.
Therefore,
ky, = 0. 15927 1(1 + 17.452 1)(1 - 0.662 1).
Now 111 and 122 are calculated: Since the factors which

must be contained in these elements are known, the determination of
the "b" coefficients may be much simplified by equating coefficients

of like powers of z-l.

Given,
_ -1 -1,,.0 1 -1.2 -2 _ 3 -3
111— 1 -2z (1+ 17.452 )(b1+b1z +b1z +b1z ) (A1)
and the conditions;
111(1) =0
1 —
111(1) =0

1'11(1.05) =0
111(1.05) = 0,
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it is required to find the coefficients b?, b}, b21 and b°

1
that 111 must be,

This means

1, = (1~ 2 1% - 1027 121 - 27 (A2)
where «v is to be determained.

Expanding Equations (A1) and (A2);
L.o=1-b227"t- z-z(b}+l7.45b(1))—z—3(bf+17.45b})-z-4(bf+17.45bf):

11 _51 3

-z 17, 45b1 R

1, =1- 2 4. 1-7) -272(4.176.3) -2 3(4.3-6.37) -2 H(4.37-1. D +1. 172"
Comparing coefficients of like powers of z_lz
4.1-v=b]
4.1y - 6.3 = b}2+ 17.45b‘1’1
4.3 - 6.3y = b% + 17.45bé
4.3v-1.1=D07 + 17.45b
1 3 1
1,14 = —17,45b1.
These are very easily solved, and give,
v = 3.56.
Substituting this value for v the coefficients can be found;
bf = 0.54
b1 =-1.12
bf =0.674
3
b1 = -0,22,
and 1,, is;
i 1.2 1.2 -1
111= (1-2z 7)°(1-1.05z ) (1 +3.56z ")
Again given,
_ -1 -1,,.0 o -1 2 -2
122 =1-z (1+ 17.45z )(b2 + bzz + bzz ) (A3)
and the conditions;
122(1) =0

122(1.05) =0
1 =
122(1.05), 0,

a similar procedure may be repeated for 122.
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1,, is also 'given by,
22 -1 -1,2 -1
122=(1-z )1 -1.05z ") (1+puz 7) (A4)
where u is to be determined.
Expanding Equations (A3) and (A4),
-l o -4 2

) -2, 1 o, _-3,.2 1, -
1y = 1-2 b, -z “(by+ 17.45by) -z "(b, + 17.45by) - z- " 17.45b,

L= 127431 - w) 2723, 1u-3.2) -2 3(1.1-3.2u) -z L. 1u .

After equating coefficients of z_1 these give;

2
b2 =0,063u
b; = 0.063 - 0.187u
bg = 0.187u - 0. 187
o
b2 =3.1-u.
From which,
u=2.71,
and
o
b2 = 0.33
1
bz— 0.39
2
b2 = 0.1745 .
Then,

Ly = (1-2"1 (1~ 1052”21+ 2.7727 1)



APPENDIX III . DERIVATION OF BASIC EQUATIONS

O is the zero matrix, I the identity matrix.

Fig. 1: with U = O,
C = GD,E

171
E1 =R - D2C
therefore,
c =D, [R - D,C]
= GDlR - GD1D2C
C + GDlch = GDIR

i+cp,pJc -cp;r

c=[i+ GDID;_I GD.R.

1

With R = O,
= '
C! GDlE1 + U
E'1 = -D2C'
then,
- o L]
= GD1D2C + U
=U

C'

1

[r+ GD1D2]C
Cl

-1
[1+ GDIDZ] U

From Equation (1),

C = KR
also C = GE2
therefore,
GE2 = KR
-1
E2 =G "KR.

Equation (8) gives, _ 1

L = [1 + GDIDZ]
L[I + GDlDz] I
I, + LGD,D. =1

102
1GD.D. =1 - L

1Pz )
LGD, =[1—L]D2

96

Referring to



from Equation (9),

_ -1
K =[1-1]p,
therefore,
L=1I- KDZ'
Again from Fig. 1,
1 - - t
E2 D1D2C
1 - - !
so LGE2 LGDIDZC
= —KD?C'
- -1
1 = -
E2 G KDzLU
but since KD2 and L are diagonal matrices,
-1
= -
E2 G KDZU.
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